Apple to Earth

By Joseph Willson, Ph.D.

When a sunflower sprouts and begins to grow, it doesn’t simply push its way straight up out of the soil—it moves in a spiral.

This process, called circumnutation, is common to many plants, and nobody is quite certain why. But researchers hope to get a better idea next year with Spacelab, a joint project of NASA and the European Space Agency. This compact laboratory will be carried into space by NASA’s Space Shuttle. And on board, helping to control the experiment, will be an Apple II.

The story began in 1977 in the laboratory of University of Pennsylvania biologist Dr. Allan Brown. Brown is one of many scientists studying what factors affect plant growth. In particular, why do so many plants follow a helical path? Is it just an extraneous bit of behavior which entered by accident into the evolutionary process, or does it serve a purpose? How much do the forces of gravity come into play?

Brown focused his attention on the effects of gravity. But the study of gravity presents a problem in the lab. While a scientist can change the direction of the g-force by rotating the plant, he can never completely eliminate gravity itself.

It became clear that experiments had to be done somewhere other than in an Earthbound laboratory. NASA looked at the problem and agreed that this was, indeed, a prime example of an experiment which needed to be done in space. But one problem presented itself. Brown’s experiment would require a precision centrifuge, video cameras and recorders, lighting, temperature regulation, and controlling electronics and instruments, and it would have to be condensed into a miniature self-sufficient package about 2 x 2 x 6 feet.

So the University asked Interactive Structures, Inc. of Bala Cynwyd, PA, to design, develop and build an experiment controller which would manage every aspect of a seven-day experiment aboard the shuttle.

Old Tech, New Tech

The conservative approach to development of experiment controllers and instrumentation in 1977 was to design custom circuit boards for the timing, control and measurement circuits, and to provide a generous helping of trimming adjustments and

Address correspondence to Dr. Joseph Willson, President, Interactive Structures, Inc., 112 Bala Ave., Box 404, Bala Cynwyd, PA 19004.

30 Microcomputing, March 1982
boards and add-on chassis for the memory, Apple included space for up to 48K of memory. When you turned it on, it spoke to you in Basic instead of binary. Why, these folks had even thought about interrupts and direct memory access data transfer!

Interactive Structures had evaluated these points in the context of general-purpose laboratory computing, and had already launched a family of interface boards which would connect the Apple directly to sensing devices and other lab equipment. For the NASA application, the Apple added up to a single device that could function as both a development system and as the eventual experiment controller itself.

In addition, it was off-the-shelf, readily-available technology, just the type NASA was eager to show in use aboard the shuttle. An Apple II-based system became the experiment controller for the project.

The System

The system has a tough assignment. The hardware houses a stationary plant growth station and two miniature rotating precision centrifuges which will spin some of the plants and selectively re-create a gravity-like force [Fig.1]. The speed of rotation must be held constant, since it will generate a force of 1 g. The motor selected will accept an eight-bit number from the controller to determine speed, and also return a series of pulses which the controller can monitor to verify that the speed has reached the requested value. These signals are interfaced using the company's bidirectional D109 digital interface [Fig. 2].

Three video cameras will collect pictures of the growth at regular intervals. Solid-state CCD array cameras were chosen since they are light, compact and sturdy. Infrared lighting will minimize any stimulus to the plant. The equipment will switch on only while recording to conserve power. The project decided on a conventional video cassette recorder, interfaced through its remote-control facility. The controller will select a camera and request a recording, and a modification will allow it to monitor the current in the recording head to verify that recording was taking place. The D109 will switch cameras, recorders and lighting.

Temperature has to be monitored
and regulated so that it will not be a factor. A complete closed-loop temperature regulation system was designed for the three plant-growth areas. An integrated circuit temperature sensor in each chamber will produce a linear range of analog voltage indicating the temperature. Here, Interactive Structures used its A102 analog input system to provide multiple channel analog-to-digital conversion (Fig. 3). The firmware will check the temperature against the allowable range and control heating panels accordingly.

Certain operations, such as getting new plants from storage and inserting them into holders in the rotor, will be done by the operator, the onboard payload specialist (PS). The PS will use a front panel with indicator lamps for each of the controlled portions of the system to display experiment status and allow him to enter instructions. Membrane switches allow the PS to enter requests and acknowledge instructions from the controller. Here again, the bidirectional DI09 will handle both the lamps and the buttons with a single card.

Temperatures, speeds, video system operation and the PS's actions are to be logged for analysis after the experiment, so the experiment needs a one-way communication link. The project will use the shuttle's on-board remote acquisition unit (RAU), essentially another computer devoted to managing communications between the experiments and Earth (Fig. 4). The predefined format for communications is a serial scheme, clocked by a 1 MHz signal from the RAU, transmitting a burst of 16 16-bit words at a time. Here a special Apple interface is necessary and will include the buffer for a complete burst of data, and the control circuits to request a transmission using the RAU.

Time will be extremely important, since the growth of the plants is slow and the time in orbit is limited. (Sometimes more limited than expected, as in the second flight of the Shuttle.) The experiment therefore will need every minute, even if the system's 28-V power goes off accidentally, and even during the re-entry free-fall time when power will be turned off intentionally. Both space and weight are limited, and the essential components (camera, lights...
Heath/Zenith
SOURCEBOOK
A directory to Heath/Zenith compatible products, The Information Center Sourcebook features over 200 pages of abstracts and listings, including:

HARDWARE
PRINTED MATTER
LOCAL DEALERS
BUSINESS APPLICATIONS
SOFTWARE
USER'S GROUPS
SERVICE CENTERS

Three quarterly updates are mailed free to all owners of the Sourcebook.

The Information Center Sourcebook is available at Heathkit Electronic Centers* and computer stores nationwide, or for $20.00 from:

The Information Center
642-A W. Rhapsody
San Antonio, Texas 78216
512/340-1561
Dealer inquiries invited.

*Heathkit is a registered trademark of Heath Company

The A113 Interface puts your Apple® Computer to work in the Laboratory
For Only
$550*

You can plug this powerful interface easily into your Apple Computer and create a fast, flexible analog data acquisition system with all these features:

- 16 independent input channels
- Ranges from 100mV to ±5V, selectable by software
- 12-bit precision, 0.024% accuracy
- Fast 20-microsecond conversion time
- Sample-and-hold circuitry captures changing signals
- External trigger mode responds to commands from remote equipment
- Software diskette included, get you started right away

A113 comes with a 1-year warranty and is backed by full technical support. It is part of a full line of IS analog and digital systems, all inexpensive and modularly designed so that you can select and pay for only the interfaces and functions you need.

Interactive Structures has been designing and producing interfaces for Apple Computers since 1977. Thousands of IS units are in use internationally. One is being used in the instrumentation for making analog readings aboard the NASA Space Shuttle.

Write or call now for more information on the A113—the best investment you'll make in a research assistant.

Interactive Structures, Inc.
112 Bala Avenue
P.O. Box 404
Bala Cynwyd, PA 19004
(215) 667-1713

See List of Advertisers on page 178
and recorder) also use the most power, so a simple reserve battery system was not feasible.

The experiment therefore was designed with a special battery backup system which includes its own alarm clock (Fig. 5). This clock can power the entire experiment down for ten minutes, then power up and record video data, power down again, etc., with a resulting power savings of 10-to-1.

Packaging

Of course, the packaging of the system also needed some attention. The experiment is rack-mounted, so a metal enclosure was needed (Fig. 6). The vibration levels during lift-off and re-entry dictate that all connectors and plugs be held together firmly; all unnecessary connectors such as (you guessed it) IC sockets are a no-no. Also, in the absence of gravity, dirt, liquids and even metal particles may be found drifting through the air, so each and every exposed circuit element is coated with an insulating film. An entire custom-constructed Apple was created.

The project progressed, and it was time to test the Apple RAU interface. However, the RAU itself was still under construction in France, so an actual test was impossible. Interactive Structures pressed another Apple into service and outfitted it with an interface card which simulated all the timing and signal levels of the RAU. The RAU simulator (SRAU) would play the part of the shuttle’s communications system and verify that Experiment 101 was transmitting information properly.

Conclusions

If we ignore the special preparations necessary for space flight, the experiment controller is not an unusual laboratory Apple installation. Interactive Structures interfaces are being used to make Apples into vibration monitors, chemical
analizers and temperature controllers, with new applications being added to the list daily.

The components are low in cost. They are modular so capabilities and expenditures expand only where needed.

For example, the AI13, a 16-channel, 12-bit analog data acquisition system which allows the software to independently select the input range for each reading, is now available from stock for $550. The D109, used extensively in the experiment controller, provides 32 lines of digital I/O, plus eight other lines for handshaking, for $330. Apple Computer now offers an IEEE-488 interface card, and other companies are beginning to enter the Apple-based lab system market.

If the microprocessor was the first chapter in the story of the low-cost techniques which have been 'spin-offs' from the space program, then laboratory and scientific capabilities for personal computers may be the second. Just as the microprocessor has brought the cost of computation out of the $10,000-and-above range, these interface modules allow all but the most unusual measurement or control applications for significantly less than $1000.

Fig. 7. Payload designers' training system.

V.I.P.'s Call A.E.I.

V.I.P.'s call A.E.I. because A.E.I. tests before shipping, has expertise on all items offered, and is price competitive.

OMNITEK COMPUTERS INTERNATIONAL, INC.
1899 MAIN STREET
Tewksbury, Mass.
617-851-4580

Scotch S.S.D.S. 5.25" Diskettes. 25.00
Elephant Memory 5.25" Diskettes. 23.00
16K RAM KITS. 14.00
TECO 12" B&G Monitor. 119.00
Okidata Microline 80. 329.00
Okidata Microline 82A. 449.00
Okidata Microline 83A. 699.00
Epson Mx-80. 479.00
Radio Shack Mill w/48K. 879.00
Radio Shack Mill w/48K and 2 40T Dr. 1699.00
40 track 5.25" Tandon TM-100-1. 284.00
80 track 5.25" Tandon Dual Head484.00
5.25" "Power Supply and case." 49.00
8" "Power Supply and case." 109.00
Apple II plus w/48K, 1 drive, RF mod. 1690.00
Comet 125 CPS printer. 299.00

TRS-80 is a registered trademark of Tandy Corp.

Prices are for mail order only.

TERMS: Check, money order, Mastercard and Visa accepted. F.O.B. Tewksbury-freight extra. Mass residents add 5% sales tax. Write for FREE CATALOG.

NOW!

TELEVIDEO COMPUTER

List	Sold
TS 900 (Data Station) | 1795 | 1450
TS 801 Computer | 3295 | 2502
TS 702 Computer/Terminal | 3495 | 2796
TS 702 Imperial/Terminal | 6695 | 5396
TS 600 Multi-Use Proc. | 7195 | 5748

TELEVIDEO TERMINALS

List	Sold
915 Terminal | 690 | 575
915 Terminal | 859 | 652
925 Terminal | 985 | 725
925 Terminal | 1985 | 720
995 Terminal | 1193 | 900

NEC PRINTERS

List	Sold
3510-1 30CPs Serial | 2450 | 2000
7110-1 30CPs Serial | CALL | CALL
7110-1 155 Serial | CALL | CALL
Forms Tractors | CALL | CALL

TEXAS INSTRUMENTS PRINTERS

List	Sold
TH100 Basics | 1644 | 1389
TH100 URS ASCII | 1745 | 1479
TH100 Package | 1944 | 1645
TH100 MOD Basics | 1965 | 1621
TH100 ESP Package | 2335 | 1990

EPSON PRINTERS

List	Sold
MT-80 | CALL | CALL
MT-80 FT | 845 | CALL
MG-100 | 1135 | 939
Okidata 8A | 1195 | 999
Okidata 8A | 1195 | 999
Andale 8000 | 1675 | 1385
Andale 8001 | 1695 | 1385

LINE PRINTERS

List	Sold
Okidata 8A | 1945 | 1615
Okidata 8A | 1945 | 1615
Andale 8000 | 2195 | 1895
Andale 9011 | 2235 | 1990

MICROSOF SOFTWARE

List	Sold
Wordstar | 495 | 330
Apple Writer | 270 | 270
Speller | 240 | 190
Multterm | 160 | 160
Editor | 290 | 250
Superior | 230 | 190

DISC CABLES

List	Sold
CPC 2022 CMA I-Q | 460 | 365
ESD 2001 Controller | 460 | 370

Call our International Line.
(800) 584-7653

AUTOMATED EQUIPMENT, INC.
18430 WARD STREET, FOUNTAIN VALLEY, CALIFORNIA 92708

Scanned by cvxmelody